Dissimilarity-based classification of spectra: computational issues
نویسندگان
چکیده
For the sake of classification, spectra are traditionally represented by points in a high-dimensional feature space, spanned by spectral bands. An alternative approach is to represent spectra by dissimilarities to other spectra. This relational representation enables one to treat spectra as connected entities and to emphasize characteristics such as shape, which are difficult to handle in the traditional approach. Several classification methods for relational representations were developed and found to outperform the nearest-neighbor rule. Existing studies focus only on the performance measured by the classification error. However, for real-time spectral imaging applications, classification speed is of crucial importance. Therefore, in this paper, we focus on the computational aspects of the on-line classification of spectra. We show, that classifiers built in dissimilarity spaces may also be applied significantly faster than the nearest-neighbor rule. r 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملFeature-Based Dissimilarity Space Classification
General dissimilarity-based learning approaches have been proposed for dissimilarity data sets [1,2]. They often arise in problems in which direct comparisons of objects are made by computing pairwise distances between images, spectra, graphs or strings. Dissimilarity-based classifiers can also be defined in vector spaces [3]. A large comparative study has not been undertaken so far. This paper...
متن کاملFast Appearance-based Person Re-identification and Retrieval Using Dissimilarity Representations
Person re-identification consists of recognizing an individual who has previously been observed over a camera network. It is a recently introduced computer vision task that can provide useful tools for many applications of video-surveillance. Person re-identification exhibits several challenging issues. Most notable ones are pose variations, partial occlusions, and changing lighting conditions....
متن کاملClassifying densities using functional regression trees: Applications in oceanology
The problem of building a regression tree is considered when the response variable is a probability density function. Splitting criteria which are well adapted to measure the dissimilarity between densities are proposed using the Csiszár’s f-divergence. The comparison between performances of trees constructed with various criteria is tackled through numerical simulations. Afterwards, a tree is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Real-Time Imaging
دوره 9 شماره
صفحات -
تاریخ انتشار 2003